
science.sciencemag.org/content/373/6551/181/suppl/DC1 

 

 

 

 

 

Supplementary Materials for 
 

Gut microbiome heritability is nearly universal  

but environmentally contingent 
 

Laura Grieneisen*, Mauna Dasari, Trevor J. Gould, Johannes R. Björk, Jean-Christophe Grenier, 

Vania Yotova, David Jansen, Neil Gottel, Jacob B. Gordon, Niki H. Learn,  

Laurence R. Gesquiere, Tim L. Wango, Raphael S. Mututua, J. Kinyua Warutere,  

Long’ida Siodi, Jack A. Gilbert, Luis B. Barreiro, Susan C. Alberts, Jenny Tung†*,  

Elizabeth A. Archie†*, Ran Blekhman†* 

 
†These authors contributed equally to this work. 

*Corresponding author. Email: lgrienei@umn.edu (L.G.); 

blekhman@umn.edu (R.B.); earchie@nd.edu (E.A.A.); 

jenny.tung@duke.edu (J.T.) 

 

Published 9 July 2021, Science 373, 181 (2021) 

DOI: 10.1126/science.aba5483 

 

This PDF file includes: 

 

Materials and Methods 

Figs. S1 to S18 

Captions for Tables S1 to S15 

References 

 

Other Supplementary Material for this manuscript includes the following: 

(available at science.sciencemag.org/content/373/6551/181/suppl/DC1) 

 

 Tables S1 to S15 (Excel) 

 MDAR Reproducibility Checklist (PDF) 

 

 

 



 
 

2 
 

Materials and Methods 
 (1–8)(1, 2, 4, 6, 7, 9)(10)(1, 2, 4, 6, 7, 11)(12, 13)(14)(15)(16)(17)(18–21)(1–6, 17, 22)(23)(24–26)(12, 24, 27)(28, 29)(30) (18, 31)(1, 2, 4–6, 17, 32, 33)(1, 2, 4, 6, 7, 9, 34)(13, 35)(36)(37) 

1.1 Study system and metadata collection 
The Amboseli Baboon Research Project (ABRP) collects continuous data on the 

demography, social interactions, ecology, and diet of hundreds of individual baboons in the 
Amboseli savannah ecosystem in East Africa (2°40′S, 37°15′E, 1100 m altitude; (38)) (Fig. 1B 
and 1C). The population is primarily composed of yellow baboons (Papio cynocephalus) with 
some admixture from nearby anubis baboon (Papio anubis) populations (note that prior research 
in our population finds no link between host hybrid ancestry and microbiome composition (39)). 
At any given time, ABRP studies approximately 300 baboons living in 4 to 6 social groups (14); 
ten social groups were observed during the 14-year sampling period in this study (Fig. 1B). Each 
group is visited 3 to 4 times per week, year-round, by experienced field observers who recognize 
all baboon group members on sight using morphological characteristics (38). During each 
monitoring visit, observers census the group and record detailed information on the group 
members’ locations, social interactions, feeding patterns, and resource use, as well as collect 
fecal samples. We included data on baboon age, sex, kinship, social group membership, social 
behavior, diet, and the Amboseli environment in our implementations of the animal model to 
estimate heritability (tables S4-S6). Below we describe how data on these variables were 
collected.  

 
Season and hydrological year. Amboseli is a highly seasonal ecosystem, with a long dry 

season from June to October (“dry season”) during which there is no rain and a highly variable 
wet season from November to May (“wet season”) during which rainfall is sometimes intense 
and sometimes very low. Hydrological year is calculated from November – October, to 
correspond with the start of the long rainy season in November (40). 

 
Rainfall. Almost no rain falls during the dry season. In the remaining 7 months 

(November–May), the amount of rain varies widely between years (yearly average = 340 mm; 
range = 141–757 mm) (40). Because rainfall is inconsistent across months within a wet season, 
we modeled the effects of total rainfall in the 30 days prior to sample collection (following (31)). 

 
Social group membership and size. Social group membership was known from censuses 

of all group members collected on each visit to each social group. This information was used to 
calculate the number of baboons, of all ages and both sexes, belonging to each group on the date 
of sample collection. 

 
Age. For most baboon subjects, age is known to within a few days’ error (n = 466 of the 

585 individuals in our data set). For the remaining 119 subjects (e.g. males born in a social group 
not under long-term observation who later immigrated into the study population), birth dates are 
estimated using well-defined body metrics, including body size and carriage, tooth wear, coat 
condition, and comparison to baboons of known age (41). Baboons have well-defined life stages: 
“infants” nurse until ~70 weeks of age after which they are categorized as “juveniles.” The 
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juvenile period ends at sexual maturity (median age in Amboseli = ~4.5 years for females and 
~5.7 years for males) after which individuals are considered reproductively mature adults 
(although they may not have achieved all social markers of adulthood at that point) (14, 15). 
Excluding individuals with estimated birthdates did not qualitatively change the age heritability 
analysis results (Methods Section 1.12).  

 
Kinship and maternal identity. For every baboon born in a study group, maternity is 

known from observation. Paternity is determined based on genotyping from either blood or fecal-
extracted DNA using up to 14 highly polymorphic microsatellite loci (42, 43). Using the 
resulting pedigree data, a kinship matrix for all individuals in the data set was created in R using 
the pedantics package (44). Out of the 585 baboons in our final data set, 497 individuals (n = 
14,604 samples) have known maternities, and 464 individuals (n = 13,663 samples) have known 
paternities (fig. S1). 

A kinship matrix for all individuals in the population was used to calculate the average 
pedigree relatedness within each social group for each of the 14 hydrological years with 
microbiome samples (n=77 social group years). Specifically, within-group mean and standard 
deviation of pedigree relatedness was calculated for each of the 77 social group years. To 
describe overall patterns of within group relatedness, we then reported a grand median for 
pedigree relatedness and a grand median for standard deviation of relatedness values across 
group years in the main text.  

 
Diet. Data on diet composition is collected during 10-minute random order focal animal 

samples of adult female and juvenile behavior (45). During each focal animal sample, activity 
(e.g. feeding, walking, resting) is recorded at 1-minute intervals; when feeding is observed, the 
food type is recorded. Food items are classified by species and part (e.g. Ramphicarpa montana 
blossoms). Following (18, 19, 31), diet was estimated using feeding observations on all adult 
females and juveniles in the subject’s social group in the 30 days prior to the sample collection 
date. Although individual-level diet information would be ideal, our focal sampling data are 
sparse on the individual level, and as a result, we cannot use an individual’s focal animal samples 
to infer individual variation in diet over time-scales shorter than several months. However, social 
group-level diet is likely a sufficient representation of individual-level diet in the Amboseli 
population for three reasons. First, each baboon social group travels together throughout the day, 
stopping to forage together in the same location. For example, group membership predicts 
dietary composition for pregnant females, but dominance rank, parity, and fetal sex does not 
(46). Indeed, such group foraging is proposed to be adaptive as younger members can learn 
which foods to eat, and infant baboons have been observed consuming the same diets as their 
mothers (47). Second, although individual baboons do have dietary preferences (48), available 
food choices are determined by season and rainfall. For example, time spent foraging is more 
strongly predicted by environmental conditions than social group membership (49). Finally, 
several studies that have intensively sampled individual-level diets over short time scales have 
found differences in the quantity but not composition of food consumed. For example, pregnant 
and lactating females spent more time eating and consume more calories than cycling females in 
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the same social groups, but did not differ in types of nutrient intake (50). Low-ranking animals 
are interrupted during foraging bouts by other baboons more often than high ranking animals, but 
interruption rate was not dependent on food quality, suggesting that higher-ranking animals are 
not preferentially taking certain food items (51). Taken together, these studies suggest that 
calculating diet at the level of social group is an adequate representation of individual-level diet.  

To determine diet composition, we classified the baboons’ primary foods into 14 
categories (table S1). Diet category definitions were based on previous baboon microbiome 
studies, which collapsed plants based on parts eaten (blossom, bark, etc.) (18, 19). Because 
values collected during the 1-minute intervals within each focal sample are autocorrelated, we 
generated 1,000 random subsets of 1 value per focal sample, after limiting focal samples to only 
points where the observed activity was feeding. For each individual, we then averaged the 
abundance of each food category to calculate the mean relative contribution of each food 
category to their diet. To create a diet composition variable, we then used these data to create an 
individual-based dietary PCA using labdsv, such that each microbiome sample from a baboon 
with social group-level diet data is associated with a value for each of PCs 1-13 of the diet data 
(table S2). To create a diet diversity variable for the same samples, we used the dietary relative 
abundance data to calculate a Shannon’s H index, following (31). We determined that at least 15 
focal samples were needed to make sure that diet profiles were stable, leaving us with a final data 
set of 16,234 samples with associated diet data (Fig. 1C).  

To calculate age-based differences in diet, we used a slightly different approach, as 
detailed in Methods Section 1.12.  

 
1.2 Creating microbiome profiles  

Sample collection and storage. Fecal samples were collected opportunistically from 
individually recognized baboons within 15 minutes of defecation, using a wooden stick and 
waxed paper cup (38). The defecation time and date, together with the individual’s name, were 
noted. The fecal sample was homogenized by stirring, and an aliquot of the sample was placed 
into a 20 mL vial with 11 mL 95% ethanol. Samples were transported from the field back to the 
Amboseli field camp and stored in the field at ~25°C. At 2-week intervals, these samples were 
transported to the University of Nairobi where they were freeze-dried and sifted following (52). 
The freeze-dried samples were stored at -20°C until shipment to the United States, where they 
were stored at -20°C. The original purpose for fecal sample collection was to characterize the 
concentration of steroid hormone metabolites (e.g., (53–58)). Our analyses used excess freeze-
dried fecal powder that did not undergo hormone extraction. Past work has found that 
microbiome samples processed following this pipeline yield comparable results to other 
microbiome preservation methods (59).  
 

DNA extraction and sequencing. DNA was extracted using the MoBio and QIAGEN 
PowerSoil kit for 96-well plates (60, 61). DNA was extracted from ~0.05 g of freeze-dried fecal 
powder for each sample. Extraction proceeded according to the manufacturer’s instructions, with 
some modifications (61): (i) we increased the amount of PowerBead solution to 950 μL/well to 
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increase the hydration of the freeze-dried samples, and (ii) after the addition of PowerBead 
solution and lysis buffer C1, we incubated the plates at 60°C for 10 minutes.  

16S rRNA amplicon libraries were constructed following the Earth Microbiome Project’s 
(EMP) standard protocols (62). Specifically, we used polymerase chain reaction (PCR) to 
amplify a ~390 bp-long fragment that encompassed the V4 region of the 16S rRNA gene using 
primers 515F - 806R (63, 64). Amplicons were quantified with Quant-iT PicoGreen dsDNA 
Assay Kit (ThermoFisher/Invitrogen cat. no. P11496). Equal amounts of amplicon DNA from 
each sample (70 ng) were pooled into a single tube. The pooled amplicons were cleaned using 
AMPure XP beads (Beckman Coulter). The cleaned amplicon pool was quantified using a Qubit 
fluorometer. Libraries were sequenced on the Illumina HiSeq 2500 using the Rapid Run mode (2 
lanes per run). Sequences were single indexed on the forward primer and 12 bp Golay barcoded.  
 

Sequence processing and initial quality filtering. Sequences were processed using the 
Illumina demultiplexing protocol and DADA2 pipeline (65). To maintain quality control, we 
added steps to prevent barcode misassignment, resolve singleton amplicon sequence variants 
(i.e., sequence variants that only appear in one sample), and account for technical variation.  

Samples were demultiplexed using the standard bcl2fastq function. To prevent barcode 
misassignment, we included the additional optional argument --create-fastq-for-index-reads, 
which generates additional fastq files for index reads, allowing us to filter sample fastq reads by 
their corresponding index sequence (66). Sequences in the index fastq files with a maximum 
error estimate (maxEE) < 0.1 were retained using DADA2’s filterAndTrim(...) function (65). 
Sequences in the sample fastq files were only retained if their corresponding index read passed 
the quality filter. Finally, cutadapt with minimum length=150 bases was used for Illumina 
library adapter removal and to remove reads that were too short for further analysis (67). 

We merged read pairs and performed initial quality filtering using the default DADA2 
protocol for large data sets (68) with the following exceptions: 
FilterAndTrim(truncLen=c(240,160), maxN=0, maxEE=2, rm.phix=TRUE,truncQ=11). 
DADA2 processing was performed on each HiSeq sequencing run of two lanes each (n = 8 runs), 
and then runs were combined (mergeSequenceTables(...)). Potentially chimeric reads were 
removed (removeBimeraDenovo(...)).  

Because DADA2 was run separately on each HiSeq sequencing run, we pooled all of the 
samples and used LearnErrors(...) to resolve any singleton ASVs across runs, which could 
reflect errors. If the pipeline was run without pooling, there were 45,350 ASVs in the final data 
set, but pooling decreased the number of ASVs to 36,349. Lastly, we performed taxonomic 
identification with IdTaxa(...), available in the DECIPHER package (69), against the Silva 
reference database SILVA_SSU_r132_March2018.RData (70). The numbers of reads remaining 
at each stage in this processing pipeline are provided in table S3. 
 

Additional quality filtering: We designed our study to include rigorous quality control 
checks on the processed data. First, to ensure that older samples had not degraded, we tested if 
sample age predicted DNA concentration. We found no relationship between how long a sample 
had been stored and its DNA concentration (linear model; b = 2.0x10-04, p = 0.064) (fig. S2). 
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Second, batch effects are of great concern in microbiome studies (71–73). To ameliorate 
potential batch effects in our data, we pooled samples as part of the DADA2 pipeline to resolve 
singleton ASVs, as discussed above. To further test for batch effects, we sequenced technical 
replicates (i.e., the same sample extracted and prepared for sequencing on multiple plates, and 
sequenced on multiple lanes/flowcells). There were 182 technical replicates from 30 samples, 
spread over 40 96-well library prep plates (range = 3 - 8 replicates / sample, median = 6). 
Technical replicates from different plates clustered with each other rather than with their plate, 
indicating that true biological differences between samples are larger than plate-based batch 
effects (fig. S3). Third, we included blank sequencing wells (i.e. DNA extraction blanks). Blank 
wells had significantly less DNA than the sample wells (t-test; t = -50, p < 2.2x10-16). We 
removed samples that had DNA extraction concentrations < 4X the blank on that sample's plate, 
as well as samples with < 1,000 reads. Finally, we removed blank samples and technical 
replicates, as well as sequences found in only 1 sample, leaving us with a data set of 17,167 
samples and 10,720 ASVs. Over 87% of samples were retained after all of our quality filtering 
checks. The number of reads per sample in this data set ranged from 1,021 to 477,241 with a 
median of 50,220 (fig. S4). Note that the final data set used in this paper was smaller (N = 
16,234 samples from 585 individuals) because diet information was not available for some 
samples. 
 
1.3 Defining gut microbiome phenotypes 

We estimated the heritability of 1,034 gut microbiome “phenotypes”. These phenotypes 
included: (i) 7 measures of overall microbiome composition (community phenotypes: ASV 
richness, ASV Shannon’s H index, and the first five principal coordinates (PCs) of a Bray-Curtis 
dissimilarity matrix); (ii) 283 single-taxon phenotypes representing the relative abundance of 
individual microbiome taxa—from ASVs through phyla—that were found in >50% of samples; 
(iii) 744 presence/absence phenotypes coded as a 1 or 0 to represent the presence (1) or absence 
(0) of single taxa at the ASV through phylum levels found in 10% to 90% of samples. Beyond 
these 1,034 phenotypes, for some analyses we aggregated the 290 community and single-taxon 
phenotypes into (iv) 100 collapsed phenotypes. Details on how each set of phenotypes was 
constructed are as follows: 

 
(i) Community phenotypes. In total, there were 7 community phenotypes: two measures 

of alpha diversity and five principal coordinates of a Bray-Curtis dissimilarity matrix. We 
calculated two measures of microbial alpha diversity based on the final ASV table. ASV richness 
was calculated for each sample as the number of unique ASVs found in the sample. ASV 
Shannon’s H was calculated using “metric = Shannon” in the vegan package (74) (fig. S5). To 
measure overall microbiome composition, we next normalized the ASV table using a CSS 
transformation (metagenomeSeq; (75)) and calculated a pairwise Bray-Curtis dissimilarity matrix 
between all pairs of samples using vegdist() in the vegan package. We then calculated sample-
level projections onto the first 5 coordinates of a Principal Coordinates Analysis (PCoA) on the 
Bray-Curtis matrix using labdsv (76). The first 5 coordinates explain 48.5% of the variance in 
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microbiome composition between samples (PC1 = 19%, PC2 = 14.8%, PC3 = 5.8%, PC4 = 
5.3%, PC5 = 3.6%).  

 
(ii) Single-taxon phenotypes. In total, there were 283 single-taxon phenotypes, which 

reflect the relative abundance of individual ASVs and higher-level taxonomic groupings, from 
genera through phyla. To calculate the single-taxon phenotypes, we used the ASV table that had 
not been CSS transformed. We aggregated by taxonomic level (phylum, class, order, family, 
genus, ASV) and rescaled each sample to 100 to get the percent abundance per sample per 
taxonomic level. For taxa that were aggregated to a taxonomic level above the ASV (i.e. genera 
through phyla), we removed those that were unassigned or that matched chloroplasts or 
mitochondria. This filtering left 1,102 aggregated, assigned taxa (genus through phylum levels) 
and 10,635 individual ASVs. We then filtered this set to retain taxa that were found in at least 
50% of samples, which produced 144 higher-level taxonomic groupings (genus through phylum; 
fig. S6) and 139 ASVs (144 non-ASV taxa and 139 ASVs = 283 taxa).   

To test if our heritability results could be due to data set properties, we ran heritability 
models on two additional single-taxon data set transformations. These accounted for 
compositionality of microbiome data (centered log ratio transformation) and phylogenetic 
relatedness between taxa (phylogenetic balances transformation).  

Centered log ratio (CLR) transformation. The centered log ratio (CLR) transformation 
accounts for the compositionality of microbiome data by computing the log-ratio of each feature 
to the sample mean, making it robust to differences in read depth across samples (77). We 
limited the ASV counts table to the 283 ASV through phylum phenotypes found in >50% of 
samples and added 0.65 as a pseudocount to all values (following (78)) before calculating the 
CLR for each of the 283 microbiome phenotypes using the R package compositions (79). 

Phylogenetic balances (PhILR) transformation. PhILR is a Phylogenetically aware 
transformation of Isometric Log-Ratios that incorporates both the microbiome’s 
compositionality and the phylogenetic relationships between taxa (78). Specifically, a PhILR 
balance represents the log-ratio of the geometric mean abundance of the two groups of taxa that 
split at a given node of the inputted phylogenetic tree. We constructed a phylogenetic tree of the 
139 ASV sequences found in >50% of samples and used the PhILR transformation in the philr R 
package to calculate phylogenetic balances (for 139 sequences, there are n=138 nodes, resulting 
in 138 balances in the tree; (78)).  

 
(iii) Presence/absence phenotypes. We estimated the heritability of the presence/absence 

of individual taxa at the ASV through phylum level, limited to those found in 10% to 90% of 
samples (n = 744; fig. S9A, S9B). 
 

(iv) Finally, for a subset of analyses (those comparing heritability differences across 
seasons, years, age windows, and sampling depths, as well as the coefficient of variation 
analyses), we ran analyses on 100 collapsed phenotypes. These collapsed phenotypes included 
the 7 community-level phenotypes and, following common practice in prior studies (1, 2, 6), 93 
single-taxon phenotypes from the genus to phylum levels (we excluded ASVs, which are rarely 
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comparable across studies) that were collapsed across phylogenetically nested taxonomic levels. 
For example, the relative abundance of the family Christensenellaceae was nearly completely 
driven by, and 99% correlated with, the relative abundance of the genus Christensenellaceae R-7 
group nested within it, so only Christensenellaceae R-7 group was included in the set of 
collapsed phenotypes. We determined collapsed phenotypes by running pairwise Pearson 
correlations between all 144 non-ASV taxa found in >50% of samples using the rcorr function in 
the Hmisc package (80). Of these, 86 nested taxon pairs were correlated at >0.97 (fig. S14). We 
consolidated these taxa, such that only the lowest taxonomic level was used (e.g. we used the 
genus if it was highly correlated with the family), leaving the 93 collapsed traits in table S13. In 
models that use collapsed phenotypes, we present heritability estimates for the lowest taxonomic 
level of the collapsed taxa.  
 
1.4 Response variable comparison 

To test if heritability estimates for taxa were consistent across transformations, and to 
determine directionality, we ran Pearson’s correlations and paired t-tests comparing heritability 
estimates for single-taxon phenotypes to their corresponding CLR transformations and 
presence/absence heritability estimates. We found that heritability estimates for taxa were 
significantly correlated across transformations, and the heritability of relative abundance yielded 
the most conservative heritability estimates of any transformation (fig. S9D, S9E). 
Presence/absence heritability estimates for n = 204 taxa found in 50-90% of samples were 
correlated with the relative abundance of those same taxa (Pearson’s R=0.68, p=3.2x10-29) but were 
significantly higher for presence/absence phenotypes (paired t-test p=2.2x10-27). CLR heritability 
estimates were highly correlated with relative abundance estimates (n = 283 taxa in >50% of 
samples; Pearson’s R = 0.82, p = 2.3x10-69), and CLR estimates were also significantly higher than 
relative abundance estimates (paired t-test; p = 2.7x10-27). Taken together, these analyses reveal 
that both common and rare taxa demonstrate high rates of heritability, and that these rates are 
robust to compositionality. 

We also tested if prevalence and heritability of presence/absence phenotypes were 
positively correlated. We found that taxa present in more samples tended to have higher heritability 
estimates (among the n = 744 taxa found in 10-90% of samples; Pearson’s R=0.28, p=2.3x10-15; 
fig. S9C).  

Finally, Bray-Curtis PC1 (the most heritable single-taxon and community phenotype) was 
also correlated with the relative abundance of the top 3 most heritable individual taxa (an ASV 
belonging to Prevotella 9, R = 0.50, h2=0.20; the genus Prevotella 2, R = 0.40, h2=0.17; and an 
ASV belonging to Betaproteobacteriales, R = 0.36, h2=0.16; all p < 1.1x10-13). 

 
 
1.5 Estimating heritability using the “animal model” 

Introduction to the animal model. To estimate the heritability of each microbial 
phenotype, we used the narrow-sense definition of heritability (h2): that is, the amount of total 
phenotypic variance of a trait explained by additive genetic effects (excluding the effects of 
dominance, epistasis, and other non-linear interactions) (25). We used the asreml() function in 
the R package ASReml to run the ‘animal model’, a linear mixed effects model that partitions 
variance between random effects after controlling for fixed effects using a restricted maximum 
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likelihood (REML) approach (23). The animal model is a standard method for calculating the 
heritability of physical and behavioral traits in pedigreed livestock (81–85) and wild animal 
populations (86–89). In livestock, the animal model has been used, for example, to determine the 
heritability of traits including litter size of piglets (84), weaning weight of cattle (81), quality of 
sheep wool (85), cannibalism in hens (83), and spawning date in farmed salmon (82). In wild 
populations, the animal model has been used to understand environmental and genetic variation 
in complex traits, including plasticity in laying date in wild gulls (86), sexually antagonistic 
selection in red deer (88), age at first and last reproduction in swans (89), and body mass in 
relation to climate change in gulls (87). Many of the wild populations analyzed with the animal 
model to date are long-term study systems with decades of individual-level information on 
behaviors and physical traits, similar to the Amboseli baboons (reviewed in (24)).  

 
Choosing random effects for the animal model. The animal model partitions variance 

between the model random effects and categorizes variance that cannot be explained by the 
random effects as residual environmental variance. Tables S4 and S5 describe the fixed and 
random effects we included in each model. Our random effects included: (i) individual identity, 
to account for repeated sampling from each individual (i.e. non-additive interindividual 
variation; also referred to as “permanent environment effects”); (ii) maternal identity, to estimate 
maternal effects (both genetic and environmental); (iii) DNA extraction plate, to account for 
batch effects; and (iv) the additive genetic effects for each individual, on the trait of interest 
(sometimes referred to as “genetic merit” or “breeding value” (24)), which is estimated from the 
expected covariance in additive genetic effects between relatives in a pedigree and is the key 
parameter for estimating heritability. 

 
Choosing fixed effects for the animal model. Fixed effects in the animal model serve two 

purposes (12, 25, 26). First, they help control for sampling bias that arises from the fact that 
individuals are sampled at different ages and in different environments, which in turn affects 
microbiome phenotype values. Second, fixed effects help account for shared environments, diets, 
and behaviors among relatives; failure to do so could inflate heritability estimates because 
variance attributable to similar environments and behaviors (or direct transmission between 
related individuals in the same environment) could be incorrectly attributed to additive genetic 
variance.  

The fixed effects that we included in the model were those that have also been shown to 
influence microbiome composition in past studies and/or are likely to have more similar values 
between related individuals (references for each trait below; fig. S8, S9; table S4). To account 
for diet composition, we included 13 principal components of dietary variation as described 
above (e.g. (90, 91)). To account for host traits, we included host age at the time of sampling and 
host sex (e.g. (92, 93)). To account for temporal autocorrelation in the data and fluctuations in 
the physical environment, we included collection date as a running count of days through the 
data set (starting at 1 on the earliest date of collection, with a maximum of 4,899 days), 
collection month (as a factor), rainfall in the 30 days prior to sample collection, and hydrological 
year (as a factor; e.g. (31, 94)). To account for the host’s social environment, we included social 
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group membership and social group size (i.e. number of baboon group members) (e.g., (18, 19, 
92)). Finally, we included post-PCR DNA concentration and sequencing read count to control 
for technical effects. Each fixed effect improved the majority of model fits (mean=65%) for the 
100 collapsed phenotypes (Wald’s test).  

 
Model input. The basic animal model structure (24) is 
 
y = Xb + Zu + Zm + Zp + Zi + e 
 
where y is a vector of values for the microbiome phenotype of interest; b is the fixed 

effects vector; X is a matrix of observed values for the model covariates, for all samples in the 
data set; e is a vector of residual errors; and the Z terms are the random effects: Zu represents 
additive genetic effects, Zm represents maternal identity, Zp represents extraction plate, and Zi 
represents individual identity.  

 
Our model input for testing the heritability of single-taxon and community phenotypes 

(Figs. 2A-C) was as follows, where the identity of the individual in the data set (baboon_id; see 
table S4 for the codes used for each variable) is linked to the inverse relatedness matrix using the 
ginverse argument, ped(baboon_id,var=T,init=1) is the additive genetic variance term, 
ide(baboon_id,var=T,init=1) is the individual identity term, and na.method.X="include" means 
that rows with missing values are still included in the model (i.e. if maternal identity is unknown; 
see Methods Section 1.15). For the presence/absence phenotypes, we ran the same model, but 
additionally specified family = asreml.binomial(link = ‘logit’) and maxiter = 20 (to account for 
longer convergence times). 
 
#create the inverse of the additive genetic relationship matrix from 
the pedigree data, ped2 
ainv<-asreml.Ainverse(ped2)$ginv 
 
#run the model 
   modely ← asreml(fixed=asin(sqrt(taxon_relative_abundance))~ 1 + 
collection_date + readcount + age + sex + rain_month_mm + social_group 
+ group_size + diet_PC1 + diet_PC2 + diet_PC3 + diet_PC4 + diet_PC5 + 
diet_PC6 + diet_PC7 + diet_PC8 + diet_PC9 + diet_PC10 + diet_PC11 + 
diet_PC12 + diet_PC13 + post_pcr_dna_ng + hydrological_year + 
collection_month 
, random=  ~ped(baboon_id,var=T,init=1) + plate + MOTHER + 
ide(baboon_id,var=T,init=1) 
, ginverse=list(baboon_id=ainv) 
, na.method.X="include", na.method.Y="omit") 

 
How the animal model calculates heritability. We estimated heritability following the 

convention in human genetics and plant and animal breeding, in which the total phenotypic 
variance (the denominator of the heritability ratio) is estimated after correcting for known fixed 
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effects (12, 26, 27). Importantly, this allows us to exclude the contribution of purely technical 
factors, such as batch and DNA concentration, from our estimate of phenotypic variance. It also 
allows us to exclude the contribution of demographic variables like sex and age. This approach is 
similar to how h2 estimates generated for traits like human height, where the typical estimate 
(~0.7-0.8) is generated after adjusting for the fixed effect contributions of sex, age, and 
sometimes cohort or other secular trends (95, 96). 

 Specifically, the animal model output from asreml includes a table of the variance 
partitioned to each random effect after controlling for fixed effects (tables S4-S10). To calculate 
the heritability (h2) of a phenotype, we divided the additive genetic variance by the sum of all the 
estimated variance components (i.e. phenotypic variance, also called Vp) (25): 

 

	ℎ! =
𝑉"##$%$&'	)'*'%$+

%𝑉"##$%$&'	)'*'%$+ +	𝑉,*#$&$#-./ 	+ 	𝑉0.%'1*./	$#'*%$%2 	+ 	𝑉3'+4*$+./ 	+ 	𝑉5'6$#-./'
		

 
 

Choosing response variables for the animal model. For our main analyses, we ran the 
animal model on all 16,234 samples using the fixed effects and random effects described above 
and in table S4 and S5. We ran the model separately for each set of response variables (see 
Methods Section 1.3 for details of these phenotypes; see tables S6-S9 for model outputs):  

● 7 community phenotypes 
● 283 single-taxon phenotypes; using the arcsin square-root transformed relative 

abundances of taxa. We also ran a second set of models on the centered log-ratio 
transformed counts for the same 283 phenotypes, and a third set on the PhILR balances 
of n=139 ASVs found in >50% of samples; 

● 744 presence/absence phenotypes 
● 100 collapsed phenotypes 

Hypothesis testing. To determine if a single-taxon or community phenotype was 
significantly heritable, we ran the full animal model, and then ran a reduced model that excluded 
the additive genetic effects term. We used a likelihood ratio test to determine if the full model 
was a significantly better fit to the data than the reduced model following (25) (see code below). 
We corrected for multiple testing within each set of phenotypes by calculating a 10% false 
discovery rate (FDR) using the approach of Benjamini and Hochberg (97) (model outputs shown 
in table S6).  

 
#code for reduced model for testing the significance of the additive 
genetic variance term 
 
#run the full model, as described in Methods Section 1.5 
   modely ← asreml(fixed=asin(sqrt(taxa))~ 1 + collection_date + 
readcount + age + sex + rain_month_mm + social_group + group_size + 
diet_PC1 + diet_PC2 + diet_PC3 + diet_PC4 + diet_PC5 + diet_PC6 + 
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diet_PC7 + diet_PC8 + diet_PC9 + diet_PC10 + diet_PC11 + diet_PC12 + 
diet_PC13 + post_pcr_dna_ng + hydrological_year + collection_month 
, random=  ~ped(baboon_id,var=T,init=1) + plate + MOTHER + 
ide(baboon_id,var=T,init=1) 
, ginverse=list(baboon_id=ainv) 
, na.method.X="include", na.method.Y="omit") 
 
#run the reduced model 
   modely_no_pedigree ← asreml(fixed=asin(sqrt(taxa))~ 1 + 
collection_date + readcount + age + sex + rain_month_mm + social_group 
+ group_size + diet_PC1 + diet_PC2 + diet_PC3 + diet_PC4 + diet_PC5 + 
diet_PC6 + diet_PC7 + diet_PC8 + diet_PC9 + diet_PC10 + diet_PC11 + 
diet_PC12 + diet_PC13 + post_pcr_dna_ng + hydrological_year + 
collection_month 
, random=  ~plate + MOTHER + ide(baboon_id,var=T,init=1) 
, ginverse=list(baboon_id=ainv) 
, na.method.X="include", na.method.Y="omit") 
 
#calculate the p-value of the likelihood ratio test comparing models 
  LRT_p <-  1-pchisq(2*(modely$loglik - modely_no_pedigree$loglik),1) 

 
FDR threshold. In the main text, we report heritable phenotypes using an FDR of 10%, 

which led us to infer that gut microbiome phenotypes are near-universally heritable (97% of 
single-taxon and community phenotypes). This inference is robust to a more stringent FDR 
threshold: at 1% FDR, 93% of phenotypes remained significantly heritable.  

 
Permutation test of heritability estimate size. To determine if heritability estimates were 

significantly higher than expected by chance, we randomly permuted the baboon identities 1000 
times and re-ran the heritability model for each permutation for each of the 100 collapsed 
phenotypes. We then plotted the observed heritability estimate for each phenotype within the 
distribution of the permuted estimates and found that for 97 / 100 phenotypes, the observed 
heritability estimate was substantially higher than all 1000 permutations (p < 0.001; fig. S10). 
For 3 phenotypes, the heritability estimate was on the tail end of the distribution, but still higher 
than expected by chance; the genus Lachnospiraceae FCS020 group, p = 0.005; the class Bacilli, 
p = 0.003; and the genus Senegalimassilia, p = 0.001. Bacilli and Lachnospiraceae FCS020 
group are not significantly heritable in the animal models, and Senegalimassilia is significantly 
heritable at h2 = 0.082. Taken together, the permutation results suggest that our heritability 
estimates are higher than expected by chance.  

 
Heritability significance for presence/absence phenotypes. There are two substantial 

differences in interpreting heritability using a binomial model. First, because our binomial model 
used the logit link function, the link variance must be included in the denominator of the 
heritability calculation (98) rather than the residual variance (VR, which is outputted as a dummy 
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variable). The link variance for the logit link is 3.29 (99). As such, the heritability calculation for 
presence/absence models is:  

 

	ℎ! =
𝑉"##$%$&'	)'*'%$+

%𝑉"##$%$&'	)'*'%$+ +	𝑉,*#$&$#-./ 	+ 	𝑉0.%'1*./	$#'*%$%2 	+ 	𝑉3'+4*$+./ 	+ 	3.29'
		

 
 

Second, likelihood ratio tests, which were used for model selection in the other 
heritability models, cannot be used for the binomial animal model (23). To determine if 
presence/absence phenotypes were significantly heritable, we therefore used two alternative 
approaches. First, we classified a phenotype as heritable if the VA component made a positive 
(non-zero) contribution to the model and if the standard error bars did not overlap with 0. 704 / 
744 phenotypes (95%) met these criteria (model outputs show in table S7). Second, to determine 
if heritability estimates were significantly higher than expected by chance, we randomly 
permuted the baboon identities 20 times and re-ran the heritability model for each permutation 
for each of the 744 microbial phenotypes. 720 phenotypes had heritability estimates higher than 
expected by chance (p < 0.05), and the 24 phenotypes that did not have heritability estimates 
higher than expected by chance all also failed the first criterion for non-zero heritability. Given 
that the first approach yielded a more conservative estimate of the number of heritable 
phenotypes than the second approach, we used the first approach to define significantly heritable 
phenotypes.  
 
1.6 Testing for phylogenetic effects on heritability estimates 
 To test for a phylogenetic effect on taxon heritability, we constructed an ultrametric 
phylogenetic tree of the 139 ASV sequences found in >50% of samples using the ape and 
phangorn packages in R (100, 101). We tested for an overall signal of phylogenetic relatedness 
on the heritability of these 139 ASVs using standard metrics of phylogenetic signal (Moran’s I, 
Blomberg’s K, and Pagel’s lambda) in the phylosignal R package (102). There was an overall 
signal of phylogenetic relatedness on Moran’s I and Pagel’s lambda (I = 0.0996, p = 0.001; 
lambda = 0.73, p = 0.001) but not on Blomberg’s K (K = 0.051, p = 0.09). The Pagel’s lambda 
for microbial heritability estimates is in a similar range to the Pagel’s lambda for social and 
ecological traits across primate species, including the number of females in a social group 
(0.742), day range (0.743), and midpoint of latitudinal range (0.733) (103). To determine which 
taxa were driving the phylogenetic signal, we ran local Moran’s I in phylosignal (fig. S11).  
 
1.7 Correlating heritability estimates for microbial taxa found in humans and baboons  

We compared the heritability of baboon microbiome phenotypes to heritability estimates of 
human microbiome phenotypes obtained from 7 human data sets in 5 studies (one study, (1), 
analyzed 3 data sets) (1, 2, 4–6, 32, 33). We note that this comparison is likely conservative, as 
different methods were used to assign microbial taxonomy and measure heritability across the 
human studies and between the human studies and our study (1, 2, 4–6). There were 32 taxa at 
the genus through phylum level that were heritable in the current baboon study and at least 1 
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human data set (based on the significance criteria applied by the study authors; table S12 and 
Fig. 2D). To test whether heritability estimates for these 32 taxa were correlated between 
baboons and humans, we ran a linear mixed effects model with heritability estimates in humans 
as the response variable, heritability estimates in baboons as the fixed effect, and the identity of 
the human data set as a random effect. This analysis revealed that heritability estimates were 
positively correlated in baboons and humans (b = 0.91, p = 0.014). This pattern was also 
supported when we ran a Pearson’s correlation on the same data set, as reported in the main text, 
using the average heritability of a taxon across the human studies in which it was detected as 
heritable. We found that h2 in baboons was significantly correlated with this mean human h2 
value (Pearson’s R = 0.52, p = 0.002). 
 
1.8 Co-occurrence network analysis  

To test if heritable taxa in baboons demonstrated similar co-occurrence networks to 
heritable taxa in humans, we ran SparCC on 31 significantly heritable microbial families found 
in > 50% of samples (104), following (1). SparCC cannot account for multiple samples from the 
same individual, so we ran SparCC for 100 permutations on the mean taxon abundance within 
each baboon individual for each family. We did not find the same clustering patterns as (1), but 
we did find that a taxon’s heritability was positively correlated with its number of significant 
network connections (Pearson’s R 0.58, p = 0.0006; fig. S13A, S13B).  
 
1.9 Comparing microbiome heritability estimates to other heritable traits in primates 
 To place our results in a broader evolutionary context, we collected heritability estimates 
for other traits in nonhuman primates and created a qualitative visualization (fig. S12). A full list 
of traits, studies, and primate species is shown in table S10. There are no published studies on 
the heritability of complex traits in wild baboons, so instead we focus on 180 heritable traits 
drawn from 19 studies across captive baboons and bonobos, and in free-ranging macaques (105–
123). We classified the traits as: 
 

1. Free-ranging primate behaviors. These include 4 studies measuring the heritability of 37 
social behaviors in free-ranging macaques (Macaca mulatta).  

2. Zoo primate behaviors. These include 1 study measuring the heritability of 10 social 
behaviors in zoo bonobos (Pan paniscus).  

3. Baboon physiology. These include 11 studies measuring the heritability of 84 physical 
traits in captive baboons. 

4. Captive baboon behaviors. These include 1 study measuring the heritability of 66 
behaviors in captive baboons. 

5. Baboon life history. These include 2 studies measuring the heritability of 2 traits in 
captive baboons. 

 
1.10 Seasonal effects on heritability estimates 

Amboseli is a highly seasonal ecosystem. To test the effects of season on heritability 
estimates, the data set was split into dry season (n = 6,650 samples from 543 individuals) and 
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wet season (n = 9,584 samples from 536 individuals). Within each season, the animal model was 
run on each of the 100 collapsed phenotypes, using the same fixed and random effects as in the 
full model, as well as the same procedure to correct for multiple testing (see Methods Section 
1.5). 93 phenotypes were significantly heritable in the dry season, 92 phenotypes were 
significantly heritable in the wet season, and 89 were significantly heritable in both (10% FDR). 
 

Environmental diversity may explain seasonal effects. Although we control for diet in our 
models, individuals who eat diverse diets may be more exposed to other aspects of season-
dependent environmental diversity that our model does not capture. To test this idea, we 
stratified the data in terms of dietary Shannon’s H and applied the animal model to the 50% most 
diverse diet samples, using the same procedure as for the full model. 72% of the samples in the 
high diet diversity group are from the wet season. We then repeated the models on the 50% least 
diverse diet samples, and ran a paired t-test on the heritability estimates between the two model 
groups (fig. S15B). If samples are split into tertiles, a similar pattern emerges: 77% of samples in 
the most diverse tertile are from the wet season, and heritability estimates decreased from the 
highest to lowest dietary diversity groups (fig. S15C). 

 
Seasonal differences in phenotypic variance. We tested if seasonal differences in 

heritability estimates were due to higher total phenotypic variance (Vp) in the wet season than in 
the dry season. We found significantly higher Vp for microbial phenotypes in the wet season 
versus the dry season (paired t-test; t = 4.3, p = 4.2x10-5; fig. S15A). For the purpose of this 
analysis, we excluded ASV richness and ASV Shannon’s H, as Vp for these two phenotypes was 
several orders of magnitude higher than for other microbial phenotypes. If the Vp values for ASV 
richness and ASV Shannon’s H are scaled to a similar range to the other Vp values by dividing 
by 100,000, the paired t-test yields nearly identical results (t = 4.3, p-value = 3.8x10-5).  
 
1.11 Variation in heritability over time 

To test if heritability estimates varied over time, we ran the animal model on the 15 most 
heritable collapsed microbial phenotypes in hydrological years with >=150 baboons and >= 1000 
samples. The hydrological years included 2002 - 2005, 2007 – 2009, and 2011-2012 (see table 
S11 for sample sizes and table S5 for fixed and random effects included in each model).  
 
1.12 Effects of host age on microbiome heritability estimates 

Defining age windows. To test how host age affected heritability estimates, we ran the 
animal model on sliding windows of host age, randomly subsampled to 2000 samples from 200 
individuals per window (n = 14 windows). Each sliding window encompassed 3 years, and 
increased by 1-year increments, with one exception: the final window encompassed animals aged 
13 – 27 years, due to small sample sizes in the oldest age classes (table S14). We chose these 
parameters because sample size affects heritability estimates and the majority of baboons 
sampled were between the ages of 1 and 14 years. Using 3-year overlapping windows allowed us 
to sample as deeply and evenly as possible while still capturing age variation, although we note 
that some windows have <2000 samples or <200 individuals because there were insufficient 
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numbers of samples available for that window, such that the distribution of values is 2000 +/-284 
(median +/ SD) samples from 200 +/- 18 individuals (see table S14).  
 

Running age models. Within each of the 14 age windows described above, the animal 
model was run on each of the 100 collapsed phenotypes, using the same fixed and random 
effects as in the full model (table S5), as well as the same procedure to correct for multiple 
testing (see Methods Section 1.5). We used two approaches to test the relationship between 
heritability and host age. First, we tested for a global change in heritability with age. We ran a 
linear mixed model with the heritability estimates of all 100 collapsed phenotypes across all 14 
age windows as the response variable; age window, number of individuals, and sample size as 
fixed effects; and phenotype identity as a random effect. This analysis revealed a global increase 
in microbiome heritability estimates with host age (b = 0.0021, p = 0.00027). 
 Second, we tested which of the 100 collapsed phenotypes changed with age. To do so, we 
ran a set of linear models, with the heritability estimates of each of the 100 collapsed phenotypes 
as the response variables and age window as the fixed effect. This analysis revealed that 32 
phenotypes changed in heritability with age, with 29/32 increasing with age (Fig. 3E, 3F).  
 

Age window sample size effects on heritability estimates. The age window analysis 
included ~2000 samples and ~200 individuals per age window. We obtained qualitatively similar 
results if sample sizes were decreased to ~1500 samples from 150 individuals per window 
(Pearson correlation for significant heritability estimates; R = 0.82, p < 0.001). Further, the 
~2000 sample, 200 individual data set also yielded repeatable results across 3 random 
subsamples (Pearson correlation for significant heritability estimates; R = 0.92 - 0.94; p < 0.001). 
On average, 63% of the available samples within each age window (and 78% of the available 
individuals) were used within each age window. 

 
Age differences in variance components. We tested if age differences in heritability 

estimates were due to decreasing total phenotypic variance (Vp) with age, increased additive 
genetic variance (VA), or decreased residual environmental variance (VR). Parallel to our tests of 
age-related changes in heritability, we ran 3 linear mixed models with total Vp, VA, and VR for 
all 100 collapsed phenotypes across all 14 age windows as the respective response variables, age 
window, number of individuals, and sample size as fixed effects, and phenotype identity as a 
random effect. These analyses revealed no change in Vp with host age (b = -2.0x10-6, p = 0.19), 
an increase in VA (b = 1.7x10-5, p =0.0085), and a decrease in VR (b = -2.9 x10-5, p = 0.00015). 
For the purpose of these analyses, we excluded ASV richness and ASV Shannon’s H, as Vp for 
these two phenotypes was several orders of magnitude higher than for other microbial 
phenotypes. We then limited the data set to the 29 phenotypes that showed increased heritability 
with age and ran a separate linear model for each of the 29 phenotypes with Vp as the response 
variable and age window as the fixed effect. This analysis revealed Vp changed with age for 
22/29 phenotypes, and Vp increased with age for 17 of these 22 phenotypes.  
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Age differences in taxa relative abundance. We tested if age differences in heritability 
estimates could be related to age-related changes in taxon relative abundances or overall 
compositional phenotypes, but did not find a clear relationship. We ran a linear mixed model for 
each of the 100 collapsed phenotypes with the phenotype as a response variable; age, sex, 
collection date, month, hydrological year, read count, post-PCR DNA concentration, rainfall, 
social group, social group size, and the 13 diet PCs as fixed effects; and maternal identity, 
sequencing plate and individual identity as random effects. After correcting for multiple testing, 
age was a significant predictor of taxon relative abundance in 46/100 models. Of these 46, 21 
showed a positive relationship with age (corrected p < 0.05). There was no correlation between 
the age effect estimate from the linear mixed models and phenotype heritability (Pearson’s R=-
0.0573; p = 0.57). 
 

Birth date accuracy. To test if including individuals with estimated rather than known 
birthdates affected the heritability age window results, we subset the data set to 12,699 samples 
from 466 individuals with known birthdates and repeated the age window heritability analysis 
(Methods Section 1.12). We obtained qualitatively similar results: there was a global increase in 
heritability with age for windows with sufficient sample size (for n = 8 age windows with >1000 
samples from >150 individuals per window; linear mixed model controlling for taxon, b = 
0.0013, p = 0.020). 
 

Calculating age-specific dietary diversity. To test if the increase in microbiome 
heritability with age could be explained by differences in feeding behaviors, we calculated age-
specific dietary diversity. We calculated dietary diversity separately for the dry and wet seasons, 
as there are substantial seasonal effects on diet. To calculate age-specific dietary diversity, we 
used the same data set that we used to calculate diet diversity for the whole data set: feeding 
observations during focal samples on all adult females and juveniles observed by the ABRP 
during the duration of sample collection (not only on individuals for whom we collected 
microbiome data). Food items were then grouped into categories (table S1).  

To quantify age-specific diet, we calculated diet for individual baboons (not at the level 
of the social group, as in the primary analysis of heritability; note that this approach limits our 
analysis to females and juveniles only, who are the primary targets of focal sampling in 
Amboseli). For each individual with diet information, we split diet observations from that 
individual into dry or wet season and grouped diet observations into the same overlapping age 
windows used for other age window analyses (e.g., ages 1-3 years, 2-4 years, and so on). We 
limited this data set to individual-age window combinations that contained data from at least 15 
focal samples with feeding points. We then calculated the average abundance of each food 
category for each baboon, in each age window, in the wet and dry seasons separately, based on 
1,000 random subsets of 1 point per focal sample. Dietary diversity was calculated as a 
Shannon’s H index of these food category relative abundances, per individual baboon per age 
window per season. For example, a dry season dietary diversity data point for this analysis would 
capture a summary of diet based on the recorded consumption of foods by individual X, when 
she was Y to Y+3 years old, across every dry season during that age window. 
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For the wet season, there were 1,726 dietary age window points from 348 baboons. We 
ran a linear mixed model with age window (numeric; using the window starting age, Y) as a 
fixed effect and baboon identity as a random effect to test if dietary diversity decreased with age 
in the wet season, and found that it did (b = -0.016, p=1.6x10-24; fig. S16A). The number of 
dietary age window points decreased with age, so we repeated the analysis after randomly 
subsetting the data to the same number of points per age window (n = 57; 798 points total), and 
found that diversity still significantly decreased with age (b = -0.0074, p = 0.00027). We 
repeated the analysis in the dry season, which had 1,686 dietary age window points from 345 
baboons, and found qualitatively similar results. Specifically, in the dry season, diet diversity 
decreased with age (b = -1.2x10-2, p = 2.07x10-11; fig. S16B), and this relationship held if the 
data set was structured so each window contained the same number of points (n = 60; 840 points 
total; b = -0.0099, p = 4.4x10-5). 

 
Calculating age-specific grooming patterns. To test if the increase in microbiome 

heritability with age could be explained by differences in grooming behaviors, we calculated 
age-specific grooming partner diversity. We calculated grooming partner diversity separately for 
males and females, as there are sex differences in baboon grooming behaviors, and limited the 
data set to individuals >4 years in age, as younger individuals primarily groom with their 
mothers (124). For the 270 females and 315 males in our data set, we pulled all of their grooming 
interactions for each year of their life (i.e. age >4-5 years, >5-6 years, etc.). Within each year, we 
calculated an individual’s grooming partner richness as the total number of individuals they were 
observed to groom with, and grooming partner diversity as the grooming Shannon’s H index. We 
then ran linear mixed models separately for each sex with the grooming metric for each baboon 
individual as the response variable; age in years (using the end point of each age window: i.e., 2 
represents the window >1 year old – 2 years old) as the fixed effect; and social group 
memberships over the age-year of interest, hydrological years over the age-year of interest (e.g., 
a factor where “2002-2003” represents an individual whose age >1 year – 2 years old includes 
the hydrological years 2002 and 2003) as fixed effects, and individual identity as the random 
effects (results for females shown in fig. S16C; S16D). We found that grooming diversity 
decreased with age in females for both metrics (grooming Shannon's H: b = -0.025, p = 1.9x10-

28; social partner diversity with age: b=-0.35, p=1.4x10-19). 
 
1.13 Individual effects on microbiome phenotype variation 

Coefficient of variation (CV) versus heritability. To test if phenotypes that exhibit the 
highest heritability estimates are also more consistent within individual hosts over time, we first 
limited the data set to the 357 individuals with >10 samples each (n = 15,238 samples). For each 
of the 93 collapsed single-taxon phenotypes (i.e., excluding the 7 community phenotypes), we 
used the raster package to calculate the coefficient of variation (CV) of taxon relative abundance 
within each individual, and then calculated the mean and standard deviation of CV across all 
individuals (125). We likewise calculated CV for the 7 compositional phenotypes, and for the 5 
Bray-Curtis PC compositional phenotypes (i.e. Bray-Curtis PC1 – PC5) we rescaled values to a 0 
– 100 scale. We ran a Pearson’s correlation to test if mean CV predicted heritability (fig. S17A). 
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Repeatability. We additionally tested if highly heritable phenotypes were more repeatable 

than less heritable or nonheritable microbial phenotypes. A phenotype’s repeatability captures 
the degree to which phenotypes vary between individuals due to both unspecified genetic and 
non-genetic factors and is an upper bound for heritability (25). The formula for repeatability is:  

 

	𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑉!""#$#%&	(&)&$#* +	𝑉+)"#%#",-.	

.𝑉!""#$#%&	(&)&$#* +	𝑉+)"#%#",-. 	+ 	𝑉/-$&0)-.	#"&)$#$1 	+ 	𝑉2&*3)#*-. 	+ 	𝑉4&5#",-./
		

 
We found that repeatability was strongly correlated with heritability across all microbial 

phenotypes, as VIndividual was very low for all phenotypes (R = 0.95, p =6.7x10-62; fig. S17B).  
 
1.14 Testing how the number of samples per host affects the prevalence of significantly 
heritable taxa and heritability estimates 

Testing the effects of cross-sectional sampling designs. Human studies on the microbiome 
currently rely on cross-sectional designs, with only one sample per subject. To test how 
longitudinal sampling affected our ability to detect heritable phenotypes, we subset our data set 
to 100 randomly selected cross-sectional data sets with only one sample per host. We identified 
significantly heritable collapsed phenotypes in each subset to calculate the average proportion of 
significantly heritable microbiome phenotypes across all 100 subsets. We then repeated this 
procedure for random subsets with 2, 5, 10, and 20 samples per host (Fig. 4B; table S12). 
 

Testing the effects of sample size. Human studies on microbiome heritability often have < 
2,000 samples (1, 4–6). To test how sample size affected our ability to estimate heritability, we 
subset our data set to n = 13 sampling depths. Sampling depths ranged from 100 to 14,000 
samples, to encompass a broad range of sample sizes (Fig. 4C, 4D; fig. S18). We ran heritability 
models for the 100 collapsed phenotypes for 100 random subsets at each of the 13 sampling 
depths. Within each sampling depth, there was no correlation between the number of hosts 
represented in a subset and the heritability estimates (table S15). For each random subset, we ran 
the animal model using the same parameters as for the full data set, as well as the same 
procedure to correct for multiple testing (see Methods Section 1.5).  

 
Testing the effects of sample overlap. To test if increasing concordance of h2 estimates 

with increasing sample size is simply a function of increased overlap with the full data set, we 
randomly split the data set into two non-overlapping subsets of 8,117 samples and ran 
heritability models. We found highly concordant estimates between the subsets (R = 0.92, p = 
9.5x10-44). 
 
1.15 Robustness of model selection 

We performed multiple tests to evaluate the robustness of our conclusions. Specifically, 
we tested if assortative mating, maternal effects, grooming networks, or technical effects could 
explain our heritability estimate results. We ran the following checks: 
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Assortative mating effects on heritability estimates. Assortative mating can inflate 

heritability estimates (126), and baboons are known to display some degree of assortative mating  
by rank and genetic ancestry (127). To demonstrate that assortative mating is unlikely to be 
inflating our heritability calculations, we tested if pairs of individuals in our data set who are 
parents (i.e., have had an offspring together) have more similar microbiomes to each other than 
the non-parent female-male pairs in the data set. We calculated the mean lifetime microbiome 
Bray-Curtis dissimilarity between all female-male pairs of individual baboons in our data set and 
ran a Mantel test on that matrix to test for a correlation with a 1-0 matrix indicating if individual 
female-male pairs were parents or not parents (fig. S7B).  

 
Maternal effects on heritability estimates. Maternal identity is not known for some 

individuals in our data set. To ensure that our results were robust to error in the maternal effects 
estimates, we performed several checks. First, we limited the data set to individuals with known 
mothers (n = 13,780 samples). For the 100 collapsed phenotypes, we then ran 4 animal model 
iterations that used the same fixed effects as the models that included the full data set (n = 16,234 
samples), but made the following changes to the random effects components: Model 0 did not 
include the additive genetic effects term or maternal identity, Model P+M included both the 
additive genetic effects term and maternal identity, Model P included the additive genetic effects 
term but not maternal identity, and Model M included maternal identity but not the additive 
genetic effects term. Models were compared using likelihood ratio tests and a 10% FDR for each 
analysis. If the additive genetic effects term was included, adding maternal identity improved 0 / 
100 models (Model P = Model P+M). If the additive genetic effects term was not included, 
adding maternal identity improved 70 / 100 models (Model 0 < Model M). If maternal identity 
was included, adding the additive genetic effects term improved 95 / 100 models (Model M < 
Model P+M). Further, heritability estimates did not significantly change if maternal identity was 
included versus excluded as a random effect (paired t-test, p = 0.16; fig. S7A).  

If the full data set is used (16,234 samples), the heritability estimates do not significantly 
change when maternal identity is included as a random effect in the model (paired t-test, p = 
0.35; fig. S7A; note that the animal model requires 2+ offspring per mother to adequately 
partition maternal variance (25)). If we subset to the 439 baboons (n = 12,784 samples) with at 
least 1 maternal sibling in the data set, we still found that adding maternal identity did not 
improve any models, suggesting that maternal effects are unlikely to explain the heritability 
estimates we observe in our current analyses.  
 

Social network effects on yearly heritability estimates. Previous work in Amboseli has 
shown that close grooming partners have more similar microbiomes than individuals who groom 
less often (18, 128). Because grooming networks are also positively correlated with pedigree 
relatedness in our data set (Mantel test per hydrological year; R = 0.44 - 0.475, p < 0.001), 
heritability estimates could be inflated because relatedness also captures information about 
grooming behavior (i.e., positive gene-environment correlation). Our data set is not fine-grained 
enough at short time scales to test social network effects in the same manner as previous studies 
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in Amboseli, which collected microbiome samples from all adult group members within ~1 
month’s time and thus could calculate the same year-long grooming network for all samples (18, 
128). Instead, to assess the possibility that heritability estimates could be influenced by grooming 
behaviors, we included a grooming network matrix over one hydrological year as the variance-
covariance of an environmental random effect in the animal model, following (129)’s approach 
for running multiple-matrix animal models in asreml. This analysis also limited the data set to 
individuals for whom we had data on grooming relationships for the full hydrological year in 
question. Below, we describe how grooming data were collected, how yearly grooming networks 
were calculated, and the results from including grooming networks in the animal model.  

Grooming interactions are recorded as part of representative interaction sampling during 
all group monitoring visits (38). During representative interaction sampling, observers move 
through the group as they perform focal animal samples on a randomized rotation of animals. 
The observer remains with each subject for 10 minutes and records all observations of physical 
contact for all individuals within their line of sight (including grooming interactions observed for 
animals who are not the subject of the focal sample). After 10 minutes, the observer moves to a 
new subject, ensuring representative sampling of the whole social group. For each grooming 
interaction, the observer records the identity of the groomer and the individual being groomed.  

We used these grooming interaction data to calculate a network of grooming bond 
strength, a dyadic grooming metric following (18). Because baboon social networks are 
dynamic, we calculated a separate grooming network for each social group for each hydrological 
year in the data set, limited to years with at least 150 baboons who were resident for the full year 
and had at least 1000 total microbiome samples collected over the year (years 2002, 2003, 2007-
2009). Continuous group residency was defined as being a member of the same group for at least 
360 days of a calendar year, excluding years with group fissions or other data gaps that make 
assigning residency difficult. Baboons only groom other members of their social group, so within 
each hydrological year, separate grooming networks were constructed for each social group and 
then concatenated such that all between-group grooming scores were 0. The number of grooms 
between pairs of continuous group residents within each social group within each year was 
counted (i.e. group-years) and scaled to the highest number of interactions within each group-
year such that the highest value in each group-year was 1. Hence, all grooming bonds were 
represented as a proportional strength relative to the strongest bond in their group in the 
hydrological year of interest. 

We ran the animal model with the grooming network matrix for the 100 collapsed 
phenotypes, limited to the 5 years that matched the criteria described above (5 years * 100 
phenotypes = 500 models run). We found that adding grooming networks to models without the 
pedigree matrix improved 0/500 models after correcting for multiple testing (Model 0 = Model 
G). Further, adding grooming networks to models with the pedigree matrix improved 0/500 
models after correcting for multiple testing (Model P = Model P + G). In contrast, adding 
pedigree data to models that included grooming networks improved 145/500 models after 
correcting for multiple testing (LRT FDR p < 0.1; fig. S7; Model G < Model G + P). When 
grooming is included in yearly models, the heritability estimates show a slight decrease of 
0.0051 on average, suggesting that the effect of grooming network, if any, is much smaller than 
the effect of genotype sharing. Consistent with this interpretation, we found that grooming 
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network effects explained, on average, 1.2% of the variation in the above-mentioned 145/500 
significantly heritable microbiome phenotypes models, compared to 14.6% explained by additive 
genetic variance. These results indicate that pedigree relatedness is much more likely to drive our 
results than grooming networks. We note that because our current study is longitudinal, and 
microbiome samples from grooming partners were often collected weeks or months apart (versus 
all microbiome samples collected in the same ~1 month as in previous studies), the time between 
samples may be too great to detect strong social effects on microbiome composition.  
 

Excluding variance explained by technical effects in calculating total phenotypic 
variance (VP). Variance components in the animal model generally reflect aspects of an 
individual’s environment and kin relationships. We included a technical component, DNA 
extraction plate, in our calculation of VP because it explained substantial variance in some 
microbial phenotypes. To rule out the possibility that the inclusion of this technical effect 
influenced our interpretation of h2 in the full or seasonal models, we conducted the following 
tests.  

First, we tested if excluding VTechnical affected our overall heritability estimates in the full 
(16,234 sample) data set for the 100 collapsed phenotypes. If heritability was calculated using 
the below formula, h2 estimates were highly correlated with those estimated when VTechnical was 
included (R = 0.98, p < 2.2x10-16). Excluding VTechnical only increased h2 estimates by 0.005 on 
average.  

 

	ℎ! =
𝑉"##$%$&'	)'*'%$+

%𝑉"##$%$&'	)'*'%$+ +	𝑉,*#$&$#-./ 	+ 	𝑉0.%'1*./	$#'*%$%2 	+ 	𝑉5'6$#-./'
		

 
Second, we tested if excluding VTechnical affected seasonal differences in VP. We found 

that wet season VP was still significantly higher than dry season VP if VTechnical was excluded 
(paired t-test; p = 1.5x10-4).  
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Fig. S1. Pedigree relationships, organized by birth year. In (A) and (B), each dot represents one of the 585
individual baboons in the data set, and lines indicate maternal and paternal parent-offspring relationships.
(A) Colors indicate the number of microbiome samples analyzed from each individual; (B) Colors indicate the
sex and relationship type.
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Fig. S2. Sample age does not predict DNA concentration (ng/uL). We found no relationship between storage
time for each sample (i.e., collection date) and DNA concentration, indicating that older samples were not
substantially more degraded (b = 2.0x10-04, p = 0.064).
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Fig. S3. Technical replicates cluster with each other rather than with their sequencing plate. Ordination
plots show the first two principal coordinates of a Bray-Curtis dissimilarity matrix. Each plot depicts a set of
technical replicates (i.e., the same fecal sample subject to multiple extractions on different DNA extraction
plates; facet labels are the replicate set identity number). Filled circles indicate the technical replicates and
open circles indicate the rest of the samples on the sequencing plate. For each plot, the Bray-Curtis matrix is
calculated only from the plates on which the technical replicates are located. Colors are sequencing plates.
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Fig. S4. Number of reads per sample in the 16,234 samples in the full dataset, plotted on (A) a normal scale
and (B) a log scale.
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Fig. S5. Distribution of alpha diversity across samples. (A) Distribution of ASV richness. (B) Distribution
of ASV Shannon’s H index.
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Fig. S6. Prevalence and abundance of 1,102 microbiome taxa that were identified at the genus through
phylum levels (ASVs are excluded). (A) Prevalence of all 1,102 identified taxa. 75% of these taxa were
found in <5% of samples. 144 of these taxa were found in >50% of samples and comprise part of the 283
single-taxon phenotypes (the remaining 139 taxa are ASVs, which are not plotted here). (B) The prevalence
and average per-sample abundance were correlated across all 1,102 taxa (Pearson’s R = 0.43, p < 0.001).
Y-axis values were calculated only for those samples in which the taxon was detected. The average per-sample
relative abundance of most taxa was low: 75% of taxa comprised 0.03% of the reads in a sample on average.
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Fig. S7. Heritability estimates are robust to maternal effects, grooming-based social networks, and assortative
mating. (A) Heritability estimates do not significantly change if maternal identity is included or excluded
from models. This pattern holds true if the dataset is limited to individuals with known maternal identity
(green), or if the full dataset is used (blue). The x-axis is ordered by heritability estimate size for the
n=16,234 samples with maternal identity included. (B) Assortative mating does not predict microbiome
similarity. Specifically, pairs of individuals who were parents do not have more similar lifetime microbiome
compositions than female-male pairs of individuals who were not parents (Mantel R = 0.004, p = 0.22).
(C) Grooming effects do not significantly change heritability estimates for the 100 collapsed phenotypes
(see table S5). Specifically, adding a grooming network matrix to a subset of year-long models (i.e. the
5 years with at least 150 individual baboons who had been resident for the entire year and at least 1000
total samples; See Supplement Section 1.15) did not significantly improve any models after correcting for
multiple testing. Adding a grooming network matrix compared to not accounting for grooming relationships
decreased heritability estimates by only 0.0051 on average.

8



Fig. S8. Ordination plots illustrating the effects of (A) host sex, (B) season, (C) social group membership,
and (D) host identity, without accounting for time. Plots A-C show all 16,234 samples spanning 14 years;
each point is a sample; axes represent the first two principal coordinates of a Bray-Curtis dissimilarity matrix.
Colors indicate categories within each fixed effect.
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Fig. S9. Heritability estimates are robust to data transformations, and heritability is consistently higher for
presence/absence phenotypes than single-taxon phenotypes. (A) Heritability estimates for the top 40 most
heritable presence/absence phenotypes, parallel to Fig. 2A in the main text, which shows parallel results for
single-taxon phenotypes. Phenotypes that have previously been shown to be heritable in humans are shown
in red text (1,2,4-6 ). (B/C) In the 744 presence/absence phenotypes (divided into (B) ASVs and (C) taxa at
the genus through phylum levels; the legend in B applies to both panels), the amount of variance explained
by additive genetic variance was significantly higher than that explained by host identity or maternal effects.
The y-axis is ordered by heritability within each taxonomic level, as given in table S7. This panel shows the
same information for presence/absence phenotypes as Fig. 2C shows for single-taxon phenotypes. (D) The
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prevalence of a given presence/absence phenotype is positively correlated with its heritability estimate (n =
744 phenotypes; Pearson’s R = 0.38, p = 2.3x10-15). (E) Heritability estimates are correlated for the CLR
(centered log ratio) and relative abundance transformations of the 283 single-taxon phenotypes (Pearson’s R
= 0.82, p = 2.3x10-69). (E) Heritability estimates are correlated but higher for presence/absence phenotypes
than for single-taxon phenotypes for taxa in both model sets (n=203 taxa at the ASV through phylum levels
found in 50 - 90% of samples; Pearson’s R = 0.68, p=3.2x10-29). In D and E, the red line represents the
linear fit and the dashed grey line represents x=y.
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Fig. S10. Distribution of permuted heritability estimates versus observed heritability estimates. To determine
if the observed heritability (h2) estimates were different than those obtained by chance, we randomly permuted
the baboon identities 1000 times and re-ran the heritability models for the 100 collapsed phenotypes. Each
facet is a microbial phenotype. Red stars indicate observed heritability estimates and black histograms
indicate the distribution of 1000 permuted heritability estimates.
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Fig. S11. Evolutionary relationships between taxa predict their heritability estimates. The tree was
constructed from n=139 ASVs found in >50% of microbiome samples. Red lines indicate ASVs whose relative
abundances have significantly phylogenetically structured heritability (Local Moran’s I p < 0.05), and red
text describes their taxonomic classification.
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Fig. S12. Heritability estimates for non-microbiome primate traits. Heritability estimates for baboon
microbiome traits in the current study (100 collapsed phenotypes shown) are similar to heritability estimates
for complex behavioral traits in free-ranging and zoo-housed primates and, as expected, lower than heritability
estimates for physiological traits in baboons (see full list of traits and studies in table S10)
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Fig. S13. A co-occurrence network analysis (SparCC) run for 31 microbial families found in >50% of samples.
(A) There is a positive correlation between a family’s heritability and co-occurrence network connectivity,
such that more connected taxa were also more heritable (Pearson’s R = 0.58, p = 0.006). (B) Heritable
families in baboons do not form discrete clusters.
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Fig. S14. Phylogentically nested taxa were collpased into 100 collapsed phenotypes. To identify these
phenotypes, we calculated the pairwise Pearson correlations between the relative abundance of 144 taxa
found in >50% of samples (excluding ASVs; i.e. the single-taxon phenotypes at the genus through phylum
levels). This heat map shows the pairwise Pearson correlations between these 144 taxa. Of these, 86 nested
taxon pairs were correlated at >0.97 (e.g. the genus Christensenellaceae_R-7_group is nested within the
family Christensenellaceae). Some pairs overlapped with each other (e.g. the family Veillonellaceae within
the order Selenomonadales, and the order Selenomonadales within the class Negativicutes; see table S13 for
details). For these nested taxa, the lowest level taxon was used as the representative taxon for the 93 single
taxa in the 100 collapsed phenotype dataset (the remaining 7 phenotypes in this data set are community
phenotypes). Cells are ordered by taxonomy. Colors indicate correlation between taxon relative abundances,
with values ranging from Pearson’s R = -0.47 (dark blue) to 1.0 (self; dark red).
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Fig. S15. Seasonal differences in heritability estimates likely reflect differences in environmental diversity.
(A) Total phenotypic variance is higher in the wet season than in the dry season for most of the 100 collapsed
phenotypes. (B) Heritability estimates are systematically higher for samples with low dietary diversity. This
is shown by the correlation between heritability estimates for the 100 collapsed phenotypes measured in
samples with high (top 50%) diet diversity, as measured by a dietary Shannon’s H index, in the preceding 30
days (x-axis) compared to low (bottom 50%) diet diversity in the preceding 30 days (y-axis). The grey, dashed
line represents x=y, data points represent individual taxa in the collapsed phenotype data set, and colors
indicate whether the taxon was significantly heritable in a given set of models. (C) The differences shown in
(B) are consistent when diet diversity is divided into three levels instead of two (as in (B)). Phenotypes are
ordered by heritability estimates in the full dataset.
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Fig. S16. Diet and grooming partner diversity decrease with baboon age. (A) Wet season diet (linear mixed
model controlling for baboon identity; wet season b = -1.6 x10-2, p = 1.6x10-24). (B) Dry season diet
(b = -1.2 x10-2, p = 2.0x10-11). Each box plot shows the distribution of individual dietary Shannon’s H
index values for all feeding observations by one individual baboon within the corresponding age window.
(C) Grooming partner Shannon’s H diversity in female baboons (linear mixed model controlling for baboon
identity, social group membership, and sampling years; b = -0.025, p = 1.9x10-28). (D) Number of grooming
partners in female baboons (b = -0.35, p = 1.4x10-19). (E) ASV Shannon’s H decreases slightly with age
(linear mixed model; b = -0.0063, p = 0.024).
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Fig. S17. Microbiome phenotypes vary substantially over individual host’s lifetimes. (A) The heritability
estimates of single-taxon phenotypes are not correlated with the mean lifetime coefficient of variation (CV)
for those phenotypes (R = -0.14, p = 0.15). CV was calculated by limiting the dataset to baboons with
>10 samples each (n=357 baboons; 15,238 total samples), then calculating the CV within each baboon
individual. The mean and standard deviation for CV was calculated across individuals for each phenotype.
(B) Heritability and repeatability estimates are highly correlated because individual identity explains a low,
but consistent amount of phenotypic variance. Each point is one of the 100 collapsed phenotypes, and the line
represents a linear fit (R = 0.95, p = 6.7x10-62). Colors indicate heritability in the 100 collapsed phenotypes
(red is significantly heritable, blue is not heritable, 10% FDR).
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Fig.
S18. Heritability estimates vary depending on sampling depth. Each facet is one of the 100 collapsed
phenotypes. Sampling depth is shown on the x-axis. The range of heritability estimates from 100 subsamples
at each sampling depth is shown on the y-axis. Colors indicate the percentile (e.g., dark green represents the
middle 50% of permutations).
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Supplementary Tables

Table S1. Dietary food items in each diet category.

Table S2. Principal components (PCs) of dietary composition reflect seasonal tradeoffs in food availability.
We collapsed diet composition into dietary PCs by running a principal components analysis (PCA) on the
relative abundance of 14 dietary food categories (Table S1). The loadings column indicates the two foods
with the two highest loading scores on the dietary PC.

Table S3. Sequencing reads at each step in the sample processing pipeline.

Table S4. A list of the fixed and random effects used in the ‘animal model’ as implemented in ASReml-R
v3 to produce the results shown in Figure 2 in the main text. Diet PCs are defined in Table S2. See Table S5
for a list of which fixed and random effects were included in each iteration of the animal model.

Table S5. List of fixed and random effects included in the heritability models for each analysis and the
corresponding figures arising from these analyses. See Supplement for a description of each model. Response
phenotypes are defined in the main text.

Table S6. Heritability model outputs for the single taxon phenotypes (n=283) and community phenotypes
(n=7). See Supplement Section 1.3 for how phenotypes were determined. Taxonomic levels are indicated
by letters; p indicates phylum, c indicates class, o indicates order, f indicates family, g indicates genus, and
ASV indicates ASV. Heritability estimates are from the 16,234 sample models. Phenotypes are ordered by
descending heritability within phenotype description.

Table S7. Heritability model outputs for the presence/absence phenotypes (n=744). See Supplement
Section 1.3 for how phenotypes were determined. Taxonomic levels are indicated by letters; p indicates
phylum, c indicates class, o indicates order, f indicates family, g indicates genus, and ASV indicates ASV.
Heritability estimates are from the 16,234 sample models. Phenotypes are ordered by descending heritability.
Note that likelihood ratio tests, which were used for model selection in the single-taxon and community
phenotype heritability models, cannot be used for the binomial animal model. We therefore classified a
presence/absence phenotype as heritable if the additive genetic variance (VA) component made a positive
(non-zero) contribution to the model and if the standard error bars did not overlap with 0 (“Heritability
status” column).

Table S8. Heritability model outputs for the centered-log ratio (CLR)-transformed single-taxon phenotypes
(n=283). See Supplement Section 1.3 for how phenotypes were determined. Taxonomic levels are indicated
by letters; p indicates phylum, c indicates class, o indicates order, f indicates family, g indicates genus, and
ASV indicates ASV. Heritability estimates are from the 16,234 sample models. Phenotypes are ordered by
descending heritability.

Table S9. Heritability model outputs for the PhILR-transformed single-taxon phenotypes (n=139 ASVS
transformed to 138 PhILR balances). See Supplement Section 1.3 for how phenotypes were determined.
Taxonomic levels are indicated by letters; p indicates phylum, c indicates class, o indicates order, f indicates
family, g indicates genus, and ASV indicates ASV. Heritability estimates are from the 16,234 sample models.
Phenotypes are ordered by descending heritability.

Table S10. Heritability estimates for primate traits presented in Figure S12.

Table S11. Sample sizes for yearly models and for yearly grooming network models. Note that only years
with >150 baboons and >1000 samples were used for yearly models, and only years with >150 baboons who
were full-year residents and >1000 samples were used for grooming network models. Models were run on the
top 15 most heritable collapsed phenotypes. Results are shown in Figures 3A, S7C.

Table S12. Heritability estimates and percent heritable taxa in 7 human studies and across varying sampling
depths of the current baboon study. Note that the ‘percent of heritable phenotypes’ and ‘mean heritability’
for the studies marked ‘Current study subsample’ are based on running 100 random subsamples.

Table S13. Single-taxon collapsed phenotypes (n=93) and their corresponding phylogenetically nested,
correlated single-taxon phenotypes found in 50% of the samples (n=283). See Supplement Section 1.3 for how
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collapsed phenotypes were calculated. Taxonomic levels are indicated by single letters; p indicates phylum, c
indicates class, o indicates order, f indicates family, and g indicates genus. Heritability estimates are from the
16,234 sample models.

Table S14. Sample sizes in heritability age window models. Models were run on the top 15 most heritable
collapsed phenotypes from the full model (16,234 samples). Results are shown in Figures 3E, 3F.

Table S15. For the sampling depth set of models (N samples), the number of baboons in each random
subset (N baboons) does not correlate with the heritability estimates for that subset (Pearson’s R, Pearson’s
p-value) for any sampling depth except for the lowest one. 100 permutations were run at each sampling depth.
Models were run on the 100 collapsed phenotypes. Results are shown in Figures 4C, 4D.
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